|

Method for Fault Diagnosis of Temperature-Related MEMS Inertial Sensors by Combining Hilbert-Huang Transform and Deep Learning.

Researchers

Journal

Modalities

Models

Abstract

In this paper, we propose a novel method for fault diagnosis in micro-electromechanical system (MEMS) inertial sensors using a bidirectional long short-term memory (BLSTM)-based Hilbert-Huang transform (HHT) and a convolutional neural network (CNN). First, the method for fault diagnosis of inertial sensors is formulated into an HHT-based deep learning problem. Second, we present a new BLSTM-based empirical mode decomposition (EMD) method for converting one-dimensional inertial data into two-dimensional Hilbert spectra. Finally, a CNN is used to perform fault classification tasks that use time-frequency HHT spectrums as input. According to our experimental results, significantly improved performance can be achieved, on average, for the proposed BLSTM-based EMD algorithm in terms of EMD computational efficiency compared with state-of-the-art algorithms. In addition, the proposed fault diagnosis method achieves high accuracy in fault classification.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *