| |

Land-use classification based on high-resolution remote sensing imagery and deep learning models.

Researchers

Journal

Modalities

Models

Abstract

High-resolution imagery and deep learning models have gained increasing importance in land-use mapping. In recent years, several new deep learning network modeling methods have surfaced. However, there has been a lack of a clear understanding of the performance of these models. In this study, we applied four well-established and robust deep learning models (FCN-8s, SegNet, U-Net, and Swin-UNet) to an open benchmark high-resolution remote sensing dataset to compare their performance in land-use mapping. The results indicate that FCN-8s, SegNet, U-Net, and Swin-UNet achieved overall accuracies of 80.73%, 89.86%, 91.90%, and 96.01%, respectively, on the test set. Furthermore, we assessed the generalization ability of these models using two measures: intersection of union and F1 score, which highlight Swin-UNet’s superior robustness compared to the other three models. In summary, our study provides a systematic analysis of the classification differences among these four deep learning models through experiments. It serves as a valuable reference for selecting models in future research, particularly in scenarios such as land-use mapping, urban functional area recognition, and natural resource management.Copyright: © 2024 Hao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *