|

Improving Robotic Hand Prosthesis Control With Eye Tracking and Computer Vision: A Multimodal Approach Based on the Visuomotor Behavior of Grasping.

Researchers

Journal

Modalities

Models

Abstract

The complexity and dexterity of the human hand make the development of natural and robust control of hand prostheses challenging. Although a large number of control approaches were developed and investigated in the last decades, limited robustness in real-life conditions often prevented their application in clinical settings and in commercial products. In this paper, we investigate a multimodal approach that exploits the use of eye-hand coordination to improve the control of myoelectric hand prostheses. The analyzed data are from the publicly available MeganePro Dataset 1, that includes multimodal data from transradial amputees and able-bodied subjects while grasping numerous household objects with ten grasp types. A continuous grasp-type classification based on surface electromyography served as both intent detector and classifier. At the same time, the information provided by eye-hand coordination parameters, gaze data and object recognition in first-person videos allowed to identify the object a person aims to grasp. The results show that the inclusion of visual information significantly increases the average offline classification accuracy by up to 15.61 ± 4.22% for the transradial amputees and of up to 7.37 ± 3.52% for the able-bodied subjects, allowing trans-radial amputees to reach average classification accuracy comparable to intact subjects and suggesting that the robustness of hand prosthesis control based on grasp-type recognition can be significantly improved with the inclusion of visual information extracted by leveraging natural eye-hand coordination behavior and without placing additional cognitive burden on the user.Copyright © 2022 Cognolato, Atzori, Gassert and Müller.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *