|

Improving performance of medical image alignment through super-resolution.

Researchers

Journal

Modalities

Models

Abstract

Medical image alignment is an important tool for tracking patient conditions, but the quality of alignment is influenced by the effectiveness of low-dose Cone-beam CT (CBCT) imaging and patient characteristics. To address these two issues, we propose an unsupervised alignment method that incorporates a preprocessing super-resolution process. We constructed the model based on a private clinical dataset and validated the enhancement of the super-resolution on alignment using clinical and public data. Through all three experiments, we demonstrate that higher resolution data yields better results in the alignment process. To fully constrain similarity and structure, a new loss function is proposed; Pearson correlation coefficient combined with regional mutual information. In all test samples, the newly proposed loss function obtains higher results than the common loss function and improve alignment accuracy. Subsequent experiments verified that, combined with the newly proposed loss function, the super-resolution processed data boosts alignment, can reaching up to 9.58%. Moreover, this boost is not limited to a single model, but is effective in different alignment models. These experiments demonstrate that the unsupervised alignment method with super-resolution preprocessing proposed in this study effectively improved alignment and plays an important role in tracking different patient conditions over time.© Korean Society of Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *