Improving Image Quality and Nodule Characterization in Ultra-low-dose Lung CT with Deep Learning Image Reconstruction.

Researchers

Journal

Modalities

Models

Abstract

To investigate the influence of the deep learning image reconstruction (DLIR) on the image quality and quantitative analysis of pulmonary nodules under ultra-low dose lung CT conditions.This was a prospective study with patient consent and included 56 patients with suspected pulmonary nodules. Patients were examined by both standard-dose CT (SDCT) and ultra-low-dose CT (ULDCT). SDCT images were reconstructed with adaptive statistical iterative reconstruction-V 40% (ASIR-V40%) (group A), while ULDCT images were reconstructed using ASIR-V40% (group B) and high-strength DLIR (DLIR-H) (group C). The three image sets were analyzed using a commercial computer aided diagnosis (CAD) software. Parameters such as nodule length, width, density, volume, risk, and classification were measured. The CAD quantitative data of different nodule types (solid, calcified, and subsolid nodules) and nodule image quality scores evaluated by two physicians on a 5-point scale were compared.The radiation dose in ULDCT was 0.25 ± 0.08mSv, 7.2% that of the 3.48 ± 1.08mSv in SDCT (P < 0.001). 104 pulmonary nodules were detected (51/53 solid, 26/24 calcified and 27/27 subsolid in Groups A and (B&C), respectively). Group B had lower density for solid, calcified nodules, and lower volume and risk for subsolid nodules than Group A, while Group C had lower density for calcified nodules (P < 0.05), There were no significant differences in other parameters among the three groups (P > 0.05). Group A and C had similar image quality for nodules and were higher than Group B (P < 0.05).DLIR-H significantly improves image quality than ASIR-V40% and maintains similar nodule detection and characterization with CAD in ULDCT compared to SDCT.Copyright © 2024. Published by Elsevier Inc.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *