|

Imaging inside highly scattering media using hybrid deep learning and analytical algorithm.

Researchers

Journal

Modalities

Models

Abstract

Imaging through highly scattering media is a challenging problem with numerous applications in biomedical and remote-sensing fields. Existing methods that use analytical or deep learning tools are limited by simplified forward models or a requirement for prior physical knowledge, resulting in blurry images or a need for large training databases. To address these limitations, we propose a hybrid scheme called Hybrid-DOT that combines analytically derived image estimates with a deep learning network. Our analysis demonstrates that Hybrid-DOT outperforms a state-of-the-art ToF-DOT algorithm by improving the PSNR ratio by 4.6 dB and reducing the resolution by a factor of 2.5. Furthermore, when compared to a deep learning stand-alone model, Hybrid-DOT achieves a 0.8 dB increase in PSNR, 1.5 times the resolution, and a significant reduction in the required dataset size (factor of 1.6-3). The proposed model remains effective at higher depths, providing similar improvements for up to 160 mean-free paths. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *