| |

Hybrid optimized temporal convolutional networks with long short-term memory for heart disease prediction with deep features.

Researchers

Journal

Modalities

Models

Abstract

A heart attack is intended as top prevalent among all ruinous ailments. Day by day, the number of affected people count is increasing globally. The medical field is struggling to detect heart disease in the initial step. Early prediction can help patients to save their life. Thus, this paper implements a novel heart disease prediction model with the help of a hybrid deep learning strategy. The developed framework consists of various steps like (i) Data collection, (ii) Deep feature extraction, and (iii) Disease prediction. Initially, the standard medical data from various patients are acquired from the clinical standard datasets. Here, a One-Dimensional Convolutional Neural Network (1DCNN) is utilized for extracting the deep features from the acquired medical data to minimize the number of redundant data from the gathered large-scale data. The acquired deep features are directly fed to the Hybrid Optimized Deep Classifier (HODC) with the integration of Temporal Convolutional Networks (TCN) with Long Short-Term Memory (LSTM), where the parameters in both classifiers are optimized using the newly suggested Enhanced Forensic-Based Investigation (EFBI) inspired meta-optimization algorithm. Throughout the result analysis, the accuracy and precision rate of the offered approach is 98.67% and 99.48%. The evaluation outcomes show that the recommended system outperforms the extant systems in terms of performance metrics examination.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *