| |

Hematoma expansion prediction in intracerebral hemorrhage patients by using synthesized CT images in an end-to-end deep learning framework.

Researchers

Journal

Modalities

Models

Abstract

Spontaneous intracerebral hemorrhage (ICH) is a type of stroke less prevalent than ischemic stroke but associated with high mortality rates. Hematoma expansion (HE) is an increase in the bleeding that affects 30%-38% of hemorrhagic stroke patients. It is observed within 24 h of onset and associated with patient worsening. Clinically it is relevant to detect the patients that will develop HE from their initial computed tomography (CT) scans which could improve patient management and treatment decisions. However, this is a significant challenge due to the predictive nature of the task and its low prevalence, which hinders the availability of large datasets with the required longitudinal information. In this work, we present an end-to-end deep learning framework capable of predicting which cases will exhibit HE using only the initial basal image. We introduce a deep learning framework based on the 2D EfficientNet B0 model to predict the occurrence of HE using initial non-contrasted CT scans and their corresponding lesion annotation as priors. We used an in-house acquired dataset of 122 ICH patients, including 35 HE cases, containing longitudinal CT scans with manual lesion annotations in both basal and follow-up (obtained within 24 h after the basal scan). Experiments were conducted using a 5-fold cross-validation strategy. We addressed the limited data problem by incorporating synthetic images into the training process. To the best of our knowledge, our approach is novel in the field of HE prediction, being the first to use image synthesis to enhance results. We studied different scenarios such as training only with the original scans, using standard image augmentation techniques, and using synthetic image generation. The best performance was achieved by adding five generated versions of each image, along with standard data augmentation, during the training process. This significantly improved (p=0.0003) the performance obtained with our baseline model using directly the original CT scans from an Accuracy of 0.56 to 0.84, F1-Score of 0.53 to 0.82, Sensitivity of 0.51 to 0.77, and Specificity of 0.60 to 0.91, respectively. The proposed approach shows promising results in predicting HE, especially with the inclusion of synthetically generated images. The obtained results highlight the significance of this research direction, which has the potential to improve the clinical management of patients with hemorrhagic stroke. The code is available at: https://github.com/NIC-VICOROB/HE-prediction-SynthCT.Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *