| |

Fruit-In-Sight: A deep learning-based framework for secondary metabolite class prediction using fruit and leaf images.

Researchers

Journal

Modalities

Models

Abstract

Fruits produce a wide variety of secondary metabolites of great economic value. Analytical measurement of the metabolites is tedious, time-consuming, and expensive. Additionally, metabolite concentrations vary greatly from tree to tree, making it difficult to choose trees for fruit collection. The current study tested whether deep learning-based models can be developed using fruit and leaf images alone to predict a metabolite’s concentration class (high or low). We collected fruits and leaves (n = 1045) from neem trees grown in the wild across 0.6 million sq km, imaged them, and measured concentration of five metabolites (azadirachtin, deacetyl-salannin, salannin, nimbin and nimbolide) using high-performance liquid chromatography. We used the data to train deep learning models for metabolite class prediction. The best model out of the seven tested (YOLOv5, GoogLeNet, InceptionNet, EfficientNet_B0, Resnext_50, Resnet18, and SqueezeNet) provided a validation F1 score of 0.93 and a test F1 score of 0.88. The sensitivity and specificity of the fruit model alone in the test set were 83.52 ± 6.19 and 82.35 ± 5.96, and 79.40 ± 8.50 and 85.64 ± 6.21, for the low and the high classes, respectively. The sensitivity was further boosted to 92.67± 5.25 for the low class and 88.11 ± 9.17 for the high class, and the specificity to 100% for both classes, using a multi-analyte framework. We incorporated the multi-analyte model in an Android mobile App Fruit-In-Sight that uses fruit and leaf images to decide whether to ‘pick’ or ‘not pick’ the fruits from a specific tree based on the metabolite concentration class. Our study provides evidence that images of fruits and leaves alone can predict the concentration class of a secondary metabolite without using expensive laboratory equipment and cumbersome analytical procedures, thus simplifying the process of choosing the right tree for fruit collection.Copyright: © 2024 Krishnan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *