Frame-by-Frame Analysis of a Commercially Available Artificial Intelligence Polyp Detection System in Full-Length Colonoscopies.

Researchers

Journal

Modalities

Models

Abstract

Computer-aided detection (CADe) helps increase colonoscopic polyp detection. However, little is known about other performance metrics like the number and duration of false-positive (FP) activations or how stable the detection of a polyp is.111 colonoscopy videos with total 1,793,371 frames were analyzed on a frame-by-frame basis using a commercially available CADe system (GI-Genius, Medtronic Inc.). Primary endpoint was the number and duration of FP activations per colonoscopy. Additionally, we analyzed other CADe performance parameters, including per-polyp sensitivity, per-frame sensitivity, and first detection time of a polyp. We additionally investigated whether a threshold for withholding CADe activations can be set to suppress short FP activations and how this threshold alters the CADe performance parameters.A mean of 101 ± 88 FPs per colonoscopy were found. Most of the FPs consisted of less than three frames with a maximal 66-ms duration. The CADe system detected all 118 polyps and achieved a mean per-frame sensitivity of 46.6 ± 26.6%, with the lowest value for flat polyps (37.6 ± 24.8%). Withholding CADe detections up to 6 frames length would reduce the number of FPs by 87.97% (p < 0.001) without a significant impact on CADe performance metrics.The CADe system works reliable but generates many FPs as a side effect. Since most FPs are very short, withholding short-term CADe activations could substantially reduce the number of FPs without impact on other performance metrics. Clinical practice would benefit from the implementation of customizable CADe thresholds.© 2022 The Author(s). Published by S. Karger AG, Basel.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *