| |

Feature-Level Attention-Guided Multitask CNN for Fault Diagnosis and Working Conditions Identification of Rolling Bearing.

Researchers

Journal

Modalities

Models

Abstract

Accurate and real-time fault diagnosis (FD) and working conditions identification (WCI) are the key to ensuring the safe operation of mechanical systems. We observe that there is a close correlation between the fault condition and the working condition in the vibration signal. Most of the intelligent FD methods only learn some features from the vibration signals and then use them to identify fault categories. They ignore the impact of working conditions on the bearing system, and such a single-task learning method cannot learn the complementary information contained in multiple related tasks. Therefore, this article is devoted to mining richer and complementary globally shared features from vibration signals to complete the FD and WCI of rolling bearings at the same time. To this end, we propose a novel multitask attention convolutional neural network (MTA-CNN) that can automatically give feature-level attention to specific tasks. The MTA-CNN consists of a global feature shared network (GFS-network) for learning globally shared features and K task-specific networks with feature-level attention module (FLA-module). This architecture allows the FLA-module to automatically learn the features of specific tasks from globally shared features, thereby sharing information among different tasks. We evaluated our method on the wheelset bearing data set and motor bearing data set. The results show that our method has a better performance than the state-of-the-art deep learning methods and strongly prove that our multitask learning mechanism can improve the results of each task.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *