| |

Fast interactive medical image segmentation with weakly supervised deep learning method.

Researchers

Journal

Modalities

Models

Abstract

To achieve accurate image segmentation, which is the first critical step in medical image analysis and interventions, using deep neural networks seems a promising approach provided sufficiently large and diverse annotated data from experts. However, annotated datasets are often limited because it is prone to variations in acquisition parameters and require high-level expert’s knowledge, and manually labeling targets by tracing their contour is often laborious. Developing fast, interactive, and weakly supervised deep learning methods is thus highly desirable.
We propose a new efficient deep learning method to accurately segment targets from images while generating an annotated dataset for deep learning methods. It involves a generative neural network-based prior-knowledge prediction from pseudo-contour landmarks. The predicted prior knowledge (i.e., contour proposal) is then refined using a convolutional neural network that leverages the information from the predicted prior knowledge and the raw input image. Our method was evaluated on a clinical database of 145 intraoperative ultrasound and 78 postoperative CT images of image-guided prostate brachytherapy. It was also evaluated on a cardiac multi-structure segmentation from 450 2D echocardiographic images.
Experimental results show that our model can segment the prostate clinical target volume in 0.499 s (i.e., 7.79 milliseconds per image) with an average Dice coefficient of 96.9 ± 0.9% and 95.4 ± 0.9%, 3D Hausdorff distance of 4.25 ± 4.58 and 5.17 ± 1.41 mm, and volumetric overlap ratio of 93.9 ± 1.80% and 91.3 ± 1.70 from TRUS and CT images, respectively. It also yielded an average Dice coefficient of 96.3 ± 1.3% on echocardiographic images.
We proposed and evaluated a fast, interactive deep learning method for accurate medical image segmentation. Moreover, our approach has the potential to solve the bottleneck of deep learning methods in adapting to inter-clinical variations and speed up the annotation processes.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *