Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks.

Researchers

Journal

Modalities

Models

Abstract

Deep learning techniques have been extensively used in computerized pulmonary nodule analysis in recent years. Many reported studies still utilized hybrid methods for diagnosis, in which convolutional neural networks (CNNs) are used only as one part of the pipeline, and the whole system still needs either traditional image processing modules or human intervention to obtain final results. In this paper, we introduced a fast and fully-automated end-to-end system that can efficiently segment precise lung nodule contours from raw thoracic CT scans. Our proposed system has four major modules: candidate nodule detection with Faster regional-CNN (R-CNN), candidate merging, false positive (FP) reduction with CNN, and nodule segmentation with customized fully convolutional neural network (FCN). The entire system has no human interaction or database specific design. The average runtime is about 16 s per scan on a standard workstation. The nodule detection accuracy is 91.4% and 94.6% with an average of 1 and 4 false positives (FPs) per scan. The average dice coefficient of nodule segmentation compared to the groundtruth is 0.793.
Copyright © 2019. Published by Elsevier Ltd.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *