| |

Exploratory drug discovery in breast cancer patients: A multimodal deep learning approach to identify novel drug candidates targeting RTK signaling.

Researchers

Journal

Modalities

Models

Abstract

Breast cancer, a highly formidable and diverse malignancy predominantly affecting women globally, poses a significant threat due to its intricate genetic variability, rendering it challenging to diagnose accurately. Various therapies such as immunotherapy, radiotherapy, and diverse chemotherapy approaches like drug repurposing and combination therapy are widely used depending on cancer subtype and metastasis severity. Our study revolves around an innovative drug discovery strategy targeting potential drug candidates specific to RTK signalling, a prominently targeted receptor class in cancer. To accomplish this, we have developed a multimodal deep neural network (MM-DNN) based QSAR model integrating omics datasets to elucidate genomic, proteomic expression data, and drug responses, validated rigorously. The results showcase an R2 value of 0.917 and an RMSE value of 0.312, affirming the model’s commendable predictive capabilities. Structural analogs of drug molecules specific to RTK signalling were sourced from the PubChem database, followed by meticulous screening to eliminate dissimilar compounds. Leveraging the MM-DNN-based QSAR model, we predicted the biological activity of these molecules, subsequently clustering them into three distinct groups. Feature importance analysis was performed. Consequently, we successfully identified prime drug candidates tailored for each potential downstream regulatory protein within the RTK signalling pathway. This method makes the early stages of drug development faster by removing inactive compounds, providing a hopeful path in combating breast cancer.Copyright © 2024. Published by Elsevier Ltd.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *