Estimating individual treatment effect on disability progression in multiple sclerosis using deep learning.

Researchers

Journal

Modalities

Models

Abstract

Disability progression in multiple sclerosis remains resistant to treatment. The absence of a suitable biomarker to allow for phase 2 clinical trials presents a high barrier for drug development. We propose to enable short proof-of-concept trials by increasing statistical power using a deep-learning predictive enrichment strategy. Specifically, a multi-headed multilayer perceptron is used to estimate the conditional average treatment effect (CATE) using baseline clinical and imaging features, and patients predicted to be most responsive are preferentially randomized into a trial. Leveraging data from six randomized clinical trials (nā€‰=ā€‰3,830), we first pre-trained the model on the subset of relapsing-remitting MS patients (nā€‰=ā€‰2,520), then fine-tuned it on a subset of primary progressive MS (PPMS) patients (nā€‰=ā€‰695). In a separate held-out test set of PPMS patients randomized to anti-CD20 antibodies or placebo (nā€‰=ā€‰297), the average treatment effect was larger for the 50% (HR, 0.492; 95% CI, 0.266-0.912; pā€‰=ā€‰0.0218) and 30% (HR, 0.361; 95% CI, 0.165-0.79; pā€‰=ā€‰0.008) predicted to be most responsive, compared to 0.743 (95% CI, 0.482-1.15; pā€‰=ā€‰0.179) for the entire group. The same model could also identify responders to laquinimod in another held-out test set of PPMS patients (nā€‰=ā€‰318). Finally, we show that using this model for predictive enrichment results in important increases in power.Ā© 2022. The Author(s).

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *