| |

Enhancing EEG Artifact Removal Efficiency by Introducing Dense Skip Connections to IC-U-Net.

Researchers

Journal

Modalities

Models

Abstract

Electroencephalographic (EEG) data is considered contaminated with various types of artifacts. Deep learning has been successfully applied to developing EEG artifact removal techniques to increase the signal-to-noise ratio (SNR) and enhance brain-computer interface performance. Recently, our research team has proposed an end-to-end UNet-based EEG artifact removal technique, IC-U-Net, which can reconstruct signals against various artifacts. However, this model suffers from being prone to overfitting with a limited training dataset size and demanding a high computational cost. To address these issues, this study attempted to leverage the architecture of UNet++ to improve the practicability of IC-U-Net by introducing dense skip connections in the encoder-decoder architecture. Results showed that this proposed model obtained superior SNR to the original model with half the number of parameters. Also, this proposed model achieved comparable convergency using a quarter of the training data size.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *