| |

Efficient, continual, and generalized learning in the brain – neural mechanism of Mental Schema 2.0.

Researchers

Journal

Modalities

Models

Abstract

There has been tremendous progress in artificial neural networks (ANNs) over the past decade; however, the gap between ANNs and the biological brain as a learning device remains large. With the goal of closing this gap, this paper reviews learning mechanisms in the brain by focusing on three important issues in ANN research: efficiency, continuity, and generalization. We first discuss the method by which the brain utilizes a variety of self-organizing mechanisms to maximize learning efficiency, with a focus on the role of spontaneous activity of the brain in shaping synaptic connections to facilitate spatiotemporal learning and numerical processing. Then, we examined the neuronal mechanisms that enable lifelong continual learning, with a focus on memory replay during sleep and its implementation in brain-inspired ANNs. Finally, we explored the method by which the brain generalizes learned knowledge in new situations, particularly from the mathematical generalization perspective of topology. Besides a systematic comparison in learning mechanisms between the brain and ANNs, we propose “Mental Schema 2.0,” a new computational property underlying the brain’s unique learning ability that can be implemented in ANNs.© 2023 Walter de Gruyter GmbH, Berlin/Boston.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *