|

Efficient 3D Junction Detection in Biomedical Images Based on a Circular Sampling Model and Reverse Mapping.

Researchers

Journal

Modalities

Models

Abstract

Detection and localization of terminations and junctions is a key step in the morphological reconstruction of tree-like structures in images. Previously, a ray-shooting model was proposed to detect termination points automatically. In this paper, we propose an automatic method for 3D junction points detection in biomedical images, relying on a circular sampling model and a 2D-to-3D reverse mapping approach. First, the existing ray-shooting model is improved to a circular sampling model to extract the pixel intensity distribution feature across the potential branches around the point of interest. The computation cost can be reduced dramatically compared to the existing ray-shooting model. Then, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is employed to detect 2D junction points in maximum intensity projections (MIPs) of sub-volume images in a given 3D image, by determining the number of branches in the candidate junction region. Further, a 2D-to-3D reverse mapping approach is used to map these detected 2D junction points in MIPs to the 3D junction points in the original 3D images. The proposed 3D junction point detection method is implemented as a build-in tool in the Vaa3D platform. Experiments on multiple 2D images and 3D images show average precision and recall rates of 87.11% and 88.33% respectively. In addition, the proposed algorithm is dozens of times faster than the existing deep-learning based model. The proposed method has excellent performance in both detection precision and computation efficiency for junction detection even in large-scale biomedical images.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *