Effective deep learning classification for kidney stone using axial computed tomography (CT) images.

Researchers

Journal

Modalities

Models

Abstract

Stone formation in the kidneys is a common disease, and the high rate of recurrence and morbidity of the disease worries all patients with kidney stones. There are many imaging options for diagnosing and managing kidney stone disease, and CT imaging is the preferred method.Radiologists need to manually analyse large numbers of CT slices to diagnose kidney stones, and this process is laborious and time-consuming. This study used deep automated learning (DL) algorithms to analyse kidney stones. The primary purpose of this study is to classify kidney stones accurately from CT scans using deep learning algorithms.The Inception-V3 model was selected as a reference in this study. Pre-trained with other CNN architectures were applied to a recorded dataset of abdominal CT scans of patients with kidney stones labelled by a radiologist. The minibatch size has been modified to 7, and the initial learning rate was 0.0085.The performance of the eight models has been analysed with 8209 CT images recorded at the hospital for the first time. The training and test phases were processed with limited authentic recorded CT images. The outcome result of the test shows that the Inception-V3 model has a test accuracy of 98.52 % using CT images in detecting kidney stones.The observation is that the Inception-V3 model is successful in detecting kidney stones of small size. The performance of the Inception-V3 Model is at a high level and can be used for clinical applications. The research helps the radiologist identify kidney stones with less computational cost and disregards the need for many experts for such applications.© 2023 Walter de Gruyter GmbH, Berlin/Boston.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *