|

Domain transformation learning for MR image reconstruction from dual domain input.

Researchers

Journal

Modalities

Models

Abstract

Medical images are acquired through diverse imaging systems, with each system employing specific image reconstruction techniques to transform sensor data into images. In MRI, sensor data (i.e., k-space data) is encoded in the frequency domain, and fully sampled k-space data is transformed into an image using the inverse Fourier Transform. However, in efforts to reduce acquisition time, k-space is often subsampled, necessitating a sophisticated image reconstruction method beyond a simple transform. The proposed approach addresses this challenge by training a model to learn domain transform, generating the final image directly from undersampled k-space input. Significantly, to improve the stability of reconstruction from randomly subsampled k-space data, folded images are incorporated as supplementary inputs in the dual-input ETER-net. Moreover, modifications are made to the formation of inputs for the bi-RNN stages to accommodate non-fixed k-space trajectories. Experimental validation, encompassing both regular and irregular sampling trajectories, validates the method’s effectiveness. The results demonstrated superior performance, measured by PSNR, SSIM, and VIF, across acceleration factors of 4 and 8. In summary, the dual-input ETER-net emerges as an effective both regular and irregular sampling trajectories, and accommodating diverse acceleration factors.Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *