|

Distorted underwater image reconstruction for an autonomous underwater vehicle based on a self-attention generative adversarial network.

Researchers

Journal

Modalities

Models

Abstract

Imaging through the wavy air-water surface suffers from severe geometric distortions, which are caused by the light refraction effect that affects the normal operations of underwater exploration equipment such as the autonomous underwater vehicle (AUV). In this paper, we propose a deep learning-based framework, namely the self-attention generative adversarial network (SAGAN), to remove the geometric distortions and restore the distorted image captured through the water-air surface. First, a K-means-based image pre-selection method is employed to acquire a less distorted image that preserves much useful information from an image sequence. Second, an improved generative adversarial network (GAN) is trained to translate the distorted image into the non-distorted image. During this process, the attention mechanism and the weighted training objective are adopted in our GAN framework to get the high-quality restored results of distorted underwater images. The network is able to restore the colors and fine details in the distorted images by combining the three objective losses, i.e., the content loss, the adversarial loss, and the perceptual loss. Experimental results show that our proposed method outperforms other state-of-the-art methods on the validation set and our sea trial set.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *