| |

Discovering small-molecule senolytics with deep neural networks.

Researchers

Journal

Modalities

Models

Abstract

The accumulation of senescent cells is associated with aging, inflammation and cellular dysfunction. Senolytic drugs can alleviate age-related comorbidities by selectively killing senescent cells. Here we screened 2,352 compounds for senolytic activity in a model of etoposide-induced senescence and trained graph neural networks to predict the senolytic activities of >800,000 molecules. Our approach enriched for structurally diverse compounds with senolytic activity; of these, three drug-like compounds selectively target senescent cells across different senescence models, with more favorable medicinal chemistry properties than, and selectivity comparable to, those of a known senolytic, ABT-737. Molecular docking simulations of compound binding to several senolytic protein targets, combined with time-resolved fluorescence energy transfer experiments, indicate that these compounds act in part by inhibiting Bcl-2, a regulator of cellular apoptosis. We tested one compound, BRD-K56819078, in aged mice and found that it significantly decreased senescent cell burden and mRNA expression of senescence-associated genes in the kidneys. Our findings underscore the promise of leveraging deep learning to discover senotherapeutics.© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *