|

Design and implementation of intelligent patient in-house monitoring system based on efficient XGBoost-CNN approach.

Researchers

Journal

Modalities

Models

Abstract

Because of the scarcity of caregivers and the high cost of medical devices, it is difficult to keep track of the aging population and provide assistance. To avoid deterioration of health issues, continuous monitoring of personal health should be done prior to the intervention. If a problem is discovered, the IoT platform collects and presents the caretaker with graphical data. The death rates of older patients are reduced when projections are made ahead of time. Patients can die as a result of minor abnormalities in their ECG. The cardiac dysrhythmia/irregular heart rate is classified with several multilayer parameters using a deep convolutional neural network (CNN) approach in this paper. The key benefit of utilizing this CNN approach is that it can handle databases that have been purposefully oversampled. Using the XGBoost approach, these are oversampled to deal with difficulties like minority class and imbalance. XGBoost is a decision tree-based ensemble learning algorithm that uses a gradient boosting framework. It uses an artificial neural network and predicts the unstructured data in a structured manner. This CNN-based supervised learning model is tested and simulated on a real-time elderly heart patient IoT dataset. The proposed methodology has a recall value of 100%, an F1-Score of 94.8%, a precision of 98%, and an accuracy of 98%, which is higher than existing approaches like decision trees, random forests, and Support Vector Machine. The results reveal that the proposed model outperforms state-of-the-art methodologies and improves elderly heart disease patient monitoring with a low error rate.© The Author(s), under exclusive licence to Springer Nature B.V. 2021.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *