|

Derivatization Design of Synthetically Accessible Space for Optimization: Synthesis vs Deep Generative Design.

Researchers

Journal

Modalities

Models

Abstract

Molecular design is of utmost importance in lead optimization programs ultimately determining the fate of the project and the speed to reach preclinical stage. Newly designed lead analogues or new chemotypes must successfully address the challenges in the multidimensional optimization process throughout several optimization cycles. The speed, quality, and creativity of the designs can have a major impact on the cycle time, the number of required cycles, and the number of compounds needed to be synthesized and evaluated that in combination affect the overall timeline and cost of the lead optimization phase. Recently, a new concept, generative design with deep learning, has become popular for de novo design of project relevant analogue sets. We have developed a de novo design technology called “derivatization design” that applies artificial-intelligence-assisted forward in silico synthesis for the generation of near neighbor lead analogues as well as scaffold variations. The several attractive features of the methodology include synthetic feasibility, reagent availability and cost data associated with each new molecule; thus, detailed synthetic assessment is automatically generated during the design. As a result, these practically important data types can become an early part of the ranking and selection process for cycle time reduction. The power of derivatization design is demonstrated in a simple design study of DDR1 inhibitors and comparison of the produced molecules to a recently published data set obtained with deep generative design.
© 2021 American Chemical Society.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *