| |

DeepFusionCDR: Employing Multi-Omics Integration and Molecule-Specific Transformers for Enhanced Prediction of Cancer Drug Responses.

Researchers

Journal

Modalities

Models

Abstract

Deep learning approaches have demonstrated remarkable potential in predicting cancer drug responses (CDRs), using cell line and drug features. However, existing methods predominantly rely on single-omics data of cell lines, potentially overlooking the complex biological mechanisms governing cell line responses. This paper introduces DeepFusionCDR, a novel approach employing unsupervised contrastive learning to amalgamate multi-omics features, including mutation, transcriptome, methylome, and copy number variation data, from cell lines. Furthermore, we incorporate molecular SMILES-specific transformers to derive drug features from their chemical structures. The unified multi-omics and drug signatures are combined, and a multi-layer perceptron (MLP) is applied to predict IC50 values for cell line-drug pairs. Moreover, this MLP can discern whether a cell line is resistant or sensitive to a particular drug. We assessed DeepFusionCDR’s performance on the GDSC dataset and juxtaposed it against cutting-edge methods, demonstrating its superior performance in regression and classification tasks. We also conducted ablation studies and case analyses to exhibit the effectiveness and versatility of our proposed approach. Our results underscore the potential of DeepFusionCDR to enhance CDR predictions by harnessing the power of multi-omics fusion and molecular-specific transformers. The prediction of DeepFusionCDR on TCGA patient data and case study highlight the practical application scenarios of DeepFusionCDR in real-world environments. Source code and datasets can be available on https://github.com/altriavin/DeepFusionCDR.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *