| |

DeepCDA: Deep Cross-Domain Compound-Protein Affinity Prediction through LSTM and Convolutional Neural Networks.

Researchers

Journal

Modalities

Models

Abstract

An essential part of drug discovery is the accurate prediction of the binding affinity of new compound-protein pairs. Most of the standard computational methods assume that compounds or proteins of the test data are observed during the training phase. However, in real-world situations, the test and training data are sampled from different domains with different distributions. To cope with this challenge, we propose a deep learning-based approach that consists of three steps. In the first step, the training encoder network learns a novel representation of compounds and proteins. To this end, we combine convolutional layers and LSTM layers so that the occurrence patterns of local substructures through a protein and a compound sequence are learned. Also, to encode the interaction strength of the protein and compound substructures, we propose a two-sided attention mechanism. In the second phase, to deal with the different distributions of the training and test domains, a feature encoder network is learned for the test domain by utilizing an adversarial domain adaptation approach. In the third phase, the learned test encoder network is applied to new compound-protein pairs to predict their binding affinity.
To evaluate the proposed approach, we applied it to KIBA, Davis, and BindingDB datasets. The results show that the proposed method learns a more reliable model for the test domain in more challenging situations.
https://github.com/LBBSoft/DeepCDA.
© The Author(s) (2020). Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected].

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *