Deep Spatial-angular Regularization for Light Field Imaging, Denoising, and Super-resolution.

Researchers

Journal

Modalities

Models

Abstract

In this paper, we propose a novel learning-based framework for the reconstruction of high-quality LFs from acquisitions via learned coded apertures. The proposed method incorporates the measurement observation into the deep learning framework elegantly to avoid relying entirely on data-driven priors for LF reconstruction. Specifically, we first formulate the compressive LF reconstruction as an inverse problem with an implicit regularization term. Then, we construct the regularization term with a deep efficient spatial-angular separable convolutional sub-network in the form of local and global residual learning to comprehensively explore the signal distribution free from the limited representation ability and inefficiency of deterministic mathematical modeling. Furthermore, we extend this pipeline to LF denoising and spatial super-resolution, which could be considered as variants of coded aperture imaging equipped different degradation matrices. Extensive experimental results demonstrate that the proposed methods outperform state-of-the-art approaches to a significant extent both quantitatively and qualitatively, i.e., the reconstructed LFs not only achieve much higher PSNR/SSIM but also preserve the LF parallax structure better on both real and synthetic LF benchmarks. The code will be publicly available at https://github.com/MantangGuo/DRLF.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *