| | |

Deep self-supervised learning for biosynthetic gene cluster detection and product classification.

Researchers

Journal

Modalities

Models

Abstract

Natural products are chemical compounds that form the basis of many therapeutics used in the pharmaceutical industry. In microbes, natural products are synthesized by groups of colocalized genes called biosynthetic gene clusters (BGCs). With advances in high-throughput sequencing, there has been an increase of complete microbial isolate genomes and metagenomes, from which a vast number of BGCs are undiscovered. Here, we introduce a self-supervised learning approach designed to identify and characterize BGCs from such data. To do this, we represent BGCs as chains of functional protein domains and train a masked language model on these domains. We assess the ability of our approach to detect BGCs and characterize BGC properties in bacterial genomes. We also demonstrate that our model can learn meaningful representations of BGCs and their constituent domains, detect BGCs in microbial genomes, and predict BGC product classes. These results highlight self-supervised neural networks as a promising framework for improving BGC prediction and classification.Copyright: © 2023 Rios-Martinez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *