|

Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer.

Researchers

Journal

Modalities

Models

Abstract

Recurrence is the main risk for high-grade serous ovarian cancer (HGSOC) and few prognostic biomarkers were reported. In this study, we proposed a novel deep learning (DL) method to extract prognostic biomarkers from preoperative computed tomography (CT) images, aiming at providing a non-invasive recurrence prediction model in HGSOC.
We enrolled 245 patients with HGSOC from two hospitals, which included a feature-learning cohort (n = 102), a primary cohort (n = 49) and two independent validation cohorts from two hospitals (n = 49 and n = 45). We trained a novel DL network in 8917 CT images from the feature-learning cohort to extract the prognostic biomarkers (DL feature) of HGSOC. Afterward, a DL-CPH model incorporating the DL feature and Cox proportional hazard (Cox-PH) regression was developed to predict the individual recurrence risk and 3-year recurrence probability of patients.
In the two validation cohorts, the concordance-index of the DL-CPH model was 0.713 and 0.694. Kaplan-Meier’s analysis clearly identified two patient groups with high and low recurrence risk (p = 0.0038 and 0.0164). The 3-year recurrence prediction was also effective (AUC = 0.772 and 0.825), which was validated by the good calibration and decision curve analysis. Moreover, the DL feature demonstrated stronger prognostic value than clinical characteristics.
The DL method extracts effective CT-based prognostic biomarkers for HGSOC, and provides a non-invasive and preoperative model for individualized recurrence prediction in HGSOC. In addition, the DL-CPH model provides a new prognostic analysis method that can utilize CT data without follow-up for prognostic biomarker extraction.
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *