| |

Deep learning evaluation of echocardiograms to identify occult atrial fibrillation.

Researchers

Journal

Modalities

Models

Abstract

Atrial fibrillation (AF) often escapes detection, given its frequent paroxysmal and asymptomatic presentation. Deep learning of transthoracic echocardiograms (TTEs), which have structural information, could help identify occult AF. We created a two-stage deep learning algorithm using a video-based convolutional neural network model that (1) distinguished whether TTEs were in sinus rhythm or AF and then (2) predicted which of the TTEs in sinus rhythm were in patients who had experienced AF within 90 days. Our model, trained on 111,319 TTE videos, distinguished TTEs in AF from those in sinus rhythm with high accuracy in a held-out test cohort (AUC 0.96 (0.95-0.96), AUPRC 0.91 (0.90-0.92)). Among TTEs in sinus rhythm, the model predicted the presence of concurrent paroxysmal AF (AUC 0.74 (0.71-0.77), AUPRC 0.19 (0.16-0.23)). Model discrimination remained similar in an external cohort of 10,203 TTEs (AUC of 0.69 (0.67-0.70), AUPRC 0.34 (0.31-0.36)). Performance held across patients who were women (AUC 0.76 (0.72-0.81)), older than 65 years (0.73 (0.69-0.76)), or had a CHA2DS2VASc ā‰„2 (0.73 (0.79-0.77)). The model performed better than using clinical risk factors (AUC 0.64 (0.62-0.67)), TTE measurements (0.64 (0.62-0.67)), left atrial size (0.63 (0.62-0.64)), or CHA2DS2VASc (0.61 (0.60-0.62)). An ensemble model in a cohort subset combining the TTE model with an electrocardiogram (ECGs) deep learning model performed better than using the ECG model alone (AUC 0.81 vs. 0.79, pā€‰=ā€‰0.01). Deep learning using TTEs can predict patients with active or occult AF and could be used for opportunistic AF screening that could lead to earlier treatment.Ā© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *