| |

Deep learning-enabled 3D multimodal fusion of cone-beam CT and intraoral mesh scans for clinically applicable tooth-bone reconstruction.

Researchers

Journal

Modalities

Models

Abstract

High-fidelity three-dimensional (3D) models of tooth-bone structures are valuable for virtual dental treatment planning; however, they require integrating data from cone-beam computed tomography (CBCT) and intraoral scans (IOS) using methods that are either error-prone or time-consuming. Hence, this study presents Deep Dental Multimodal Fusion (DDMF), an automatic multimodal framework that reconstructs 3D tooth-bone structures using CBCT and IOS. Specifically, the DDMF framework comprises CBCT and IOS segmentation modules as well as a multimodal reconstruction module with novel pixel representation learning architectures, prior knowledge-guided losses, and geometry-based 3D fusion techniques. Experiments on real-world large-scale datasets revealed that DDMF achieved superior segmentation performance on CBCT and IOS, achieving a 0.17 mm average symmetric surface distance (ASSD) for 3D fusion with a substantial processing time reduction. Additionally, clinical applicability studies have demonstrated DDMF’s potential for accurately simulating tooth-bone structures throughout the orthodontic treatment process.© 2023 The Authors.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *