Deep learning-based fringe modulation-enhancing method for accurate fringe projection profilometry.

Researchers

Journal

Modalities

Models

Abstract

Fringe projection profilometry (i.e., FPP) has been one of the most popular 3-D measurement techniques. The phase error due to system random noise becomes non-ignorable when fringes captured by a camera have a low fringe modulation, which are inevitable for objects’ surface with un-uniform reflectivity. The phase calculated from these low-modulation fringes may have a non-ignorable phase error and generate 3-D measurement error. Traditional methods reduce the phase error with losing details of 3-D shapes or sacrificing the measurement speed. In this paper, a deep learning-based fringe modulation-enhancing method (i.e., FMEM) is proposed, that transforms two low-modulation fringes with different phase shifts into a set of three phase-shifted high-modulation fringes. FMEM enables to calculate the desired phase from the transformed set of high-modulation fringes, and result in accurate 3-D FPP without sacrificing the speed. Experimental analysis verifies its effectiveness and accurateness.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *