| |

Deep learning-based component identification for the Raman spectra of mixtures.

Researchers

Journal

Modalities

Models

Abstract

Raman spectroscopy is widely used as a fingerprint technique for molecular identification. However, Raman spectra contain molecular information from multiple components and interferences from noise and instrumentation. Thus, component identification using Raman spectra is still challenging, especially for mixtures. In this study, a novel approach entitled deep learning-based component identification (DeepCID) was proposed to solve this problem. Convolution neural network (CNN) models were established to predict the presence of components in mixtures. Comparative studies showed that DeepCID could learn spectral features and identify components in both simulated and real Raman spectral datasets of mixtures with higher accuracy and significantly lower false positive rates. In addition, DeepCID showed better sensitivity when compared with the logistic regression (LR) with L1-regularization, k-nearest neighbor (kNN), random forest (RF) and back propagation artificial neural network (BP-ANN) models for ternary mixture spectral datasets. In conclusion, DeepCID is a promising method for solving the component identification problem in the Raman spectra of mixtures.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *