|

Deep learning based automatic diagnosis of first-episode psychosis, bipolar disorder and healthy controls.

Researchers

Journal

Modalities

Models

Abstract

Neuroimaging data driven machine learning based predictive modeling and pattern recognition has been attracted strongly attention in biomedical sciences. Machine learning based diagnosis techniques are widely applied in diagnosis of neurological diseases. However, machine learning techniques are difficult to effectively extract deep information in neuroimaging data, resulting in low classification accuracy of mental illnesses. To address this problem, we propose a deep learning based automatic diagnosis first-episode psychosis (FEP), bipolar disorder (BD) and healthy controls (HC) method. Specifically, we design a convolutional neural network (CNN) framework to automatically diagnosis based on structural magnetic functional imaging (sMRI). Our dataset consists of 89 FEP patients, 40 BD patients and 83 HC. A three-way classifier (FEP vs. BD vs. HC) and three binary classifiers (FEP vs. BD, FEP vs. HC, BD vs. HC) are trained based on their gray matter volume images. Experiment results show that the performance of CNN-based method outperforms the classic classifiers both in two and three categories classification task. Our research reveals that abnormal gray matter volume is one of the main characteristics for discriminating FEP, BD and HC.
Copyright © 2021 Elsevier Ltd. All rights reserved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *