|

Deep learning-based attenuation correction method in Tc-GSA SPECT/CT hepatic imaging: a phantom study.

Researchers

Journal

Modalities

Models

Abstract

This study aimed to evaluate a deep learning-based attenuation correction (AC) method to generate pseudo-computed tomography (CT) images from non-AC single-photon emission computed tomography images (SPECTNC) for AC in 99mTc-galactosyl human albumin diethylenetriamine pentaacetic acid (GSA) scintigraphy and to reduce patient dosage. A cycle-consistent generative network (CycleGAN) model was used to generate pseudo-CT images. The training datasets comprised approximately 850 liver phantom images obtained from SPECTNC and real CT images. The training datasets were then input to CycleGAN, and pseudo-CT images were output. SPECT images with real-time CT attenuation correction (SPECTCTAC) and pseudo-CT attenuation correction (SPECTGAN) were acquired. The difference in liver volume between real CT and pseudo-CT images was evaluated. Total counts and uniformity were then used to evaluate the effects of AC. Additionally, the similarity coefficients of SPECTCTAC and SPECTGAN were assessed using a structural similarity (SSIM) index. The pseudo-CT images produced a lower liver volume than the real CT images. SPECTCTAC exhibited a higher total count than SPECTNC and SPECTGAN, which were approximately 60% and 7% lower, respectively. The uniformities of SPECTCTAC and SPECTGAN were better than those of SPECTNC. The mean SSIM value for SPECTCTAC and SPECTGAN was 0.97. We proposed a deep learning-based AC approach to generate pseudo-CT images from SPECTNC images in 99mTc-GSA scintigraphy. SPECTGAN with AC using pseudo-CT images was similar to SPECTCTAC, demonstrating the possibility of SPECT/CT examination with reduced exposure to radiation.© 2023. The Author(s), under exclusive licence to Japanese Society of Radiological Technology and Japan Society of Medical Physics.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *