| |

Deep learning and pathomics analyses reveal cell nuclei as important features for mutation prediction of BRAF-mutated melanomas.

Researchers

Journal

Modalities

Models

Abstract

Image-based analysis as a method for mutation detection can be advantageous in settings when tumor tissue is limited or unavailable for direct testing. Here, we utilize two distinct and complementary machine learning methods of analyzing whole slide images (WSI) for predicting mutated BRAF. In the first method, WSI of melanomas from 256 patients were used to train a deep convolutional neural network (CNN) in order to develop a fully automated model that first selects for tumor-rich areas (Area Under the Curve AUC=0.96) then predicts for mutated BRAF (AUC=0.71). Saliency mapping was performed and revealed that pixels corresponding to nuclei were the most relevant to network learning. In the second method, WSI were analyzed using a pathomics pipeline that first annotates nuclei and then quantifies nuclear features, demonstrating that mutated BRAF nuclei were significantly larger and rounder nuclei compared to BRAF WT nuclei. Lastly, we developed a model that combines clinical information, deep learning, and pathomics that improves the predictive performance for mutated BRAF to AUC=0.89. Not only does this provide additional insights on how BRAF mutations affect tumor structural characteristics, machine learning-based analysis of WSI has the potential to be integrated into higher order models for understanding tumor biology.Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *