Deep Learning and Computational Chemistry.

Researchers

Journal

Modalities

Models

Abstract

Within the context of the latest resurgence in the application of artificial intelligence approaches, deep learning has undergone a renaissance over recent years. These methods have been applied to a number of problems in computational chemistry. Compared to other machine learning approaches, the practical performance advantages of deep neural networks are often unclear. However, deep learning does appear to offer a number of other advantages such as the facile incorporation of multitask learning and the enhancement of generative modeling. The high complexity of contemporary network architectures represents a potentially significant barrier to their future adoption due to the costs of training such models and challenges in interpreting their predictions. When combined with the relative paucity of very large datasets, it is interesting to reflect on whether deep learning is likely to have the kind of transformational impact on computational chemistry that it is commonly held to have had in other domains such as image recognition.© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *