| |

Deep adaptive registration of multi-modal prostate images.

Researchers

Journal

Modalities

Models

Abstract

Artificial intelligence, especially the deep learning paradigm, has posed a considerable impact on cancer imaging and interpretation. For instance, fusing transrectal ultrasound (TRUS) and magnetic resonance (MR) images to guide prostate cancer biopsy can significantly improve the diagnosis. However, multi-modal image registration is still challenging, even with the latest deep learning technology, as it requires large amounts of labeled transformations for network training. This paper aims to address this problem from two angles: (i) a new method of generating large amount of transformations following a targeted distribution to improve the network training and (ii) a coarse-to-fine multi-stage method to gradually map the distribution from source to target. We evaluate both innovations based on a multi-modal prostate image registration task, where a T2-weighted MR volume and a reconstructed 3D ultrasound volume are to be aligned. Our results demonstrate that the use of data generation can significantly reduce the registration error by up to 62%. Moreover, the multi-stage coarse-to-fine registration technique results in a mean surface registration error (SRE) of 3.66 mm (with the initial mean SRE of 9.42 mm), which is found to be significantly better than the one-step registration with a mean SRE of 4.08 mm.
Copyright © 2020. Published by Elsevier Ltd.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *