| |

Data Augmentation in Defect Detection of Sanitary Ceramics in Small and Non-i.i.d Datasets.

Researchers

Journal

Modalities

Models

Abstract

In this study, a data-augmentation method is proposed to narrow the significant difference between the distribution of training and test sets when small sample sizes are concerned. Two major obstacles exist in the process of defect detection on sanitary ceramics. The first results from the high cost of sample collection, namely, the difficulty in obtaining a large number of training images required by deep-learning algorithms, which limits the application of existing algorithms in sanitary-ceramic defect detection. Second, due to the limitation of production processes, the collected defect images are often marked, thereby resulting in great differences in distribution compared with the images of test sets, which further affects the performance of detect-detection algorithms. The lack of training data and the differences in distribution between training and test sets lead to the fact that existing deep learning-based algorithms cannot be used directly in the defect detection of sanitary ceramics. The method proposed in this study, which is based on a generative adversarial network and the Gaussian mixture model, can effectively increase the number of training samples and reduce distribution differences between training and test sets, and the features of the generated images can be controlled to a certain extent. By applying this method, the accuracy is improved from approximately 75% to nearly 90% in almost all experiments on different classification networks.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *