| |

CSConv2d: A 2-D Structural Convolution Neural Network with a Channel and Spatial Attention Mechanism for Protein-Ligand Binding Affinity Prediction.

Researchers

Journal

Modalities

Models

Abstract

The binding affinity of small molecules to receptor proteins is essential to drug discovery and drug repositioning. Chemical methods are often time-consuming and costly, and models for calculating the binding affinity are imperative. In this study, we propose a novel deep learning method, namely CSConv2d, for protein-ligand interactions’ prediction. The proposed method is improved by a DEEPScreen model using 2-D structural representations of compounds as input. Furthermore, a channel and spatial attention mechanism (CS) is added in feature abstractions. Data experiments conducted on ChEMBLv23 datasets show that CSConv2d performs better than the original DEEPScreen model in predicting protein-ligand binding affinity, as well as some state-of-the-art DTIs (drug-target interactions) prediction methods including DeepConv-DTI, CPI-Prediction, CPI-Prediction+CS, DeepGS and DeepGS+CS. In practice, the docking results of protein (PDB ID: 5ceo) and ligand (Chemical ID: 50D) and a series of kinase inhibitors are operated to verify the robustness.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *