| |

Combining multiparametric MRI features-based transfer learning and clinical parameters: application of machine learning for the differentiation of uterine sarcomas from atypical leiomyomas.

Researchers

Journal

Modalities

Models

Abstract

To explore the feasibility and effectiveness of machine learning (ML) based on multiparametric magnetic resonance imaging (mp-MRI) features extracted from transfer learning combined with clinical parameters to differentiate uterine sarcomas from atypical leiomyomas (ALMs).The data of 86 uterine sarcomas between July 2011 and December 2019 and 86 ALMs between June 2013 and June 2017 were retrospectively reviewed. We extracted deep-learning features and radiomics features from T2-weighted imaging (T2WI) and diffusion weighted imaging (DWI). The two feature extraction methods, transfer learning and radiomics, were compared. Random forest was adopted as the classifier. T2WI features, DWI features, combined T2WI and DWI (mp-MRI) features, and combined clinical parameters and mp-MRI features were applied to establish T2, DWI, T2-DWI, and complex multiparameter (mp) models, respectively. Predictive performance was assessed with the area under the receiver operating characteristic curve (AUC).In the test set, the T2, DWI, T2-DWI and complex mp models based on transfer learning (AUCs range from 0.76 to 0.81, 0.80 to 0.88, 0.85 to 0.92, and 0.94 to 0.96, respectively) outperformed the models based on radiomics (AUCs of 0.73, 0.76, 0.79, and 0.92, respectively). Moreover, the complex mp model showed the best prediction performance, with the Resnet50-complex mp model achieving the highest AUC (0.96) and accuracy (0.87).Transfer learning is feasible and superior to radiomics in the differential diagnosis of uterine sarcomas and ALMs in our dataset. ML models based on deep learning features of nonenhanced mp-MRI and clinical parameters can achieve good diagnostic efficacy.• The ML model combining nonenhanced mp-MRI features and clinical parameters can distinguish uterine sarcomas from ALMs. • Transfer learning can be applied to differentiate uterine sarcomas from ALMs and outperform radiomics. • The most accurate prediction model was Resnet50-based transfer learning, built with the deep-learning features of mp-MRI and clinical parameters.© 2022. The Author(s), under exclusive licence to European Society of Radiology.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *