|

CNN-O-ELMNet: Optimized Lightweight and Generalized Model for Lung Disease Classification and Severity Assessment.

Researchers

Journal

Modalities

Models

Abstract

The high burden of lung diseases on healthcare necessitates effective detection methods. Current Computer-aided design (CAD) systems are limited by their focus on specific diseases and computationally demanding deep learning models. To overcome these challenges, we introduce CNN-O-ELMNet, a lightweight classification model designed to efficiently detect various lung diseases, surpassing the limitations of disease-specific CAD systems and the complexity of deep learning models. This model combines a convolutional neural network for deep feature extraction with an optimized extreme learning machine, utilizing the imperialistic competitive algorithm for enhanced predictions. We then evaluated the effectiveness of CNN-O-ELMNet using benchmark datasets for lung diseases: distinguishing pneumothorax vs. non-pneumothorax, tuberculosis vs. normal, and lung cancer vs. healthy cases. Our findings demonstrate that CNN-O-ELMNet significantly outperformed (p < 0.05) state-of-the-art methods in binary classifications for tuberculosis and cancer, achieving accuracies of 97.85% and 97.70%, respectively, while maintaining low computational complexity with only 2481 trainable parameters. We also extended the model to categorize lung disease severity based on Brixia scores. Achieving a 96.20% accuracy in multi-class assessment for mild, moderate, and severe cases, makes it suitable for deployment in lightweight healthcare devices.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *