Classification of lung cancer computed tomography images using a 3-dimensional deep convolutional neural network with multi-layer filter.

Researchers

Journal

Modalities

Models

Abstract

Lung cancer creates pulmonary nodules in the patient’s lung, which may be diagnosed early on using computer-aided diagnostics. A novel automated pulmonary nodule diagnosis technique using three-dimensional deep convolutional neural networks and multi-layered filter has been presented in this paper. For the suggested automated diagnosis of lung nodule, volumetric computed tomographic images are employed. The proposed approach generates three-dimensional feature layers, which retain the temporal links between adjacent slices of computed tomographic images. The use of several activation functions at different levels of the proposed network results in increased feature extraction and efficient classification. The suggested approach divides lung volumetric computed tomography pictures into malignant and benign categories. The suggested technique’s performance is evaluated using three commonly used datasets in the domain: LUNA 16, LIDC-IDRI, and TCIA. The proposed method outperforms the state-of-the-art in terms of accuracy, sensitivity, specificity, F-1 score, false-positive rate, false-negative rate, and error rate.© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *