| |

Chemical-induced disease extraction via recurrent piecewise convolutional neural networks.

Researchers

Journal

Modalities

Models

Abstract

Extracting relationships between chemicals and diseases from unstructured literature have attracted plenty of attention since the relationships are very useful for a large number of biomedical applications such as drug repositioning and pharmacovigilance. A number of machine learning methods have been proposed for chemical-induced disease (CID) extraction due to some publicly available annotated corpora. Most of them suffer from time-consuming feature engineering except deep learning methods. In this paper, we propose a novel document-level deep learning method, called recurrent piecewise convolutional neural networks (RPCNN), for CID extraction.
Experimental results on a benchmark dataset, the CDR (Chemical-induced Disease Relation) dataset of the BioCreative V challenge for CID extraction show that the highest precision, recall and F-score of our RPCNN-based CID extraction system are 65.24, 77.21 and 70.77%, which is competitive with other state-of-the-art systems.
A novel deep learning method is proposed for document-level CID extraction, where domain knowledge, piecewise strategy, attention mechanism, and multi-instance learning are combined together. The effectiveness of the method is proved by experiments conducted on a benchmark dataset.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *