Bioinspired translation of classical music intoprotein structures using deep learning and molecular modeling.

Researchers

Journal

Modalities

Models

Abstract

Architected biomaterials, as well as sound and music, are constructed from small building blocks that are assembled across time- and length-scales. Here we present a novel deep learning-enabled integrated algorithmic workflow to merge the two concepts for radical discovery of de novo protein materials, exploiting musical creativity as the foundation, and extrapolating through a recursive method to increase protein complexity by successively injecting protein chemistry into the process. Indeed, music is one of the few universal expressions that can create bridges between cultures, find associations between seemingly unrelated concepts, and can be used as a novel way to generate bio-inspired designs that derive functions from the imaginations of the creative mind. Earlier work has offered a pathway to concert proteins into sound, and sound into proteins. Here we build on this paradigm and translate a piece of classical music into matter. Based on J.S. Bach’s Goldberg variations, we offer a series of case studies to convert the musical data imagined by the composer into protein design, and folded into a 3D structure using deep learning. The quest we seek to address is to identify semblances, or memories, or information content in such musical creation, that offers new insights into pattern relationships between distinct manifestations of information. Using Basic Local Alignment Search Tool (BLAST) analysis, we find that several fragments of the new proteins display resemblance to existing protein sequences found in proteobacteria among other organisms, especially in regions of low complexity and repetitive motifs. The resulting protein forms the basis for iterative musical composition, and an evolutionary paradigm that defines a variational pathway for melodic development, complementing conventional creative or mathematical methods. This paper broadens the concept of what is understood as bio-inspiration to include a broad array of systems created by humans, animals, or other natural mechanisms.© 2021 IOP Publishing Ltd.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *