| |

B-mode ultrasound to elastography synthesis using multiscale learning.

Researchers

Journal

Modalities

Models

Abstract

Elastography is a promising diagnostic tool that measures the hardness of tissues, and it has been used in clinics for detecting lesion progress, such as benign and malignant tumors. However, due to the high cost of examination and limited availability of elastic ultrasound devices, elastography is not widely used in primary medical facilities in rural areas. To address this issue, a deep learning approach called the multiscale elastic image synthesis network (MEIS-Net) was proposed, which utilized the multiscale learning to synthesize elastic images from ultrasound data instead of traditional ultrasound elastography in virtue of elastic deformation. The method integrates multi-scale features of the prostate in an innovative way and enhances the elastic synthesis effect through a fusion module. The module obtains B-mode ultrasound and elastography feature maps, which are used to generate local and global elastic ultrasound images through their correspondence. Finally, the two-channel images are synthesized into output elastic images. To evaluate the approach, quantitative assessments and diagnostic tests were conducted, comparing the results of MEIS-Net with several deep learning-based methods. The experiments showed that MEIS-Net was effective in synthesizing elastic images from B-mode ultrasound data acquired from two different devices, with a structural similarity index of 0.74 ± 0.04. This outperformed other methods such as Pix2Pix (0.69 ± 0.09), CycleGAN (0.11 ± 0.27), and StarGANv2 (0.02 ± 0.01). Furthermore, the diagnostic tests demonstrated that the classification performance of the synthetic elastic image was comparable to that of real elastic images, with only a 3 % decrease in the area under the curve (AUC), indicating the clinical effectiveness of the proposed method.Copyright © 2024. Published by Elsevier B.V.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *