| |

Automatic Diagnosis of Hepatocellular Carcinoma and Metastases Based on Computed Tomography Images.

Researchers

Journal

Modalities

Models

Abstract

Liver cancer, a leading cause of cancer mortality, is often diagnosed by analyzing the grayscale variations in liver tissue across different computed tomography (CT) images. However, the intensity similarity can be strong, making it difficult for radiologists to visually identify hepatocellular carcinoma (HCC) and metastases. It is crucial for the management and prevention strategies to accurately differentiate between these two liver cancers. This study proposes an automated system using a convolutional neural network (CNN) to enhance diagnostic accuracy to detect HCC, metastasis, and healthy liver tissue. This system incorporates automatic segmentation and classification. The liver lesions segmentation model is implemented using residual attention U-Net. A 9-layer CNN classifier implements the lesions classification model. Its input is the combination of the results of the segmentation model with original images. The dataset included 300 patients, with 223 used to develop the segmentation model and 77 to test it. These 77 patients also served as inputs for the classification model, consisting of 20 HCC cases, 27 with metastasis, and 30 healthy. The system achieved a mean Dice score of 87.65 % in segmentation and a mean accuracy of 93.97 % in classification, both in the test phase. The proposed method is a preliminary study with great potential in helping radiologists diagnose liver cancers.© 2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *