Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks.

Researchers

Journal

Modalities

Models

Abstract

We present a system for automatic determination of the intradermal volume of hydrogels based on optical coherence tomography (OCT) and deep learning. Volumetric image data was acquired using a custom-built OCT prototype that employs an akinetic swept laser at ~1310 nm with a bandwidth of 87 nm, providing an axial resolution of ~6.5 μm in tissue. Three-dimensional data sets of a 10 mm × 10 mm skin patch comprising the intradermal filler and the surrounding tissue were acquired. A convolutional neural network using a u-net-like architecture was trained from slices of 100 OCT volume data sets where the dermal filler volume was manually annotated. Using six-fold cross-validation, a mean accuracy of 0.9938 and a Jaccard similarity coefficient of 0.879 were achieved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *