| |

Automated analysis of fetal heart rate baseline/acceleration/deceleration using MTU-Net3 + model.

Researchers

Journal

Modalities

Models

Abstract

In clinical practice, obstetricians use visual interpretation of fetal heart rate (FHR) to diagnose fetal conditions, but inconsistencies among interpretations can hinder accuracy. This study introduces MTU-Net3+, a deep learning model designed for automated, multi-task FHR analysis, aiming to improve diagnostic accuracy and efficiency. The proposed MTU-Net3 + was built upon the UNet3 + architecture, incorporating an encoder, a decoder, full-scale skip connections, and a deep supervision module, and further integrates a self-attention mechanism and bidirectional Long Short-Term Memory layers to enhance its performance. The MTU-Net3 + model accepts the preprocessed 20-minute FHR signals as input, outputting categorical probabilities and baseline values for each time point. The proposed MTU-Net3 + model was trained on a subset of a public database, and was tested on the remaining data of the public database and a private database. In the remaining public datasets, this model achieved F1 scores of 84.21% for deceleration (F1.Dec) and 61.33% for acceleration (F1.Acc), with a Root Mean Square Baseline Difference (RMSD.BL) of 3.46 bpm, 0% of points with an absolute difference exceeding 15 bpm(D15bpm), a Synthetic Inconsistency Coefficient (SI) of 44.82%, and a Morphological Analysis Discordance Index (MADI) of 7.00%. On the private dataset, the model recorded an RMSD.BL of 1.37 bpm, 0% D15bpm, F1.Dec of 100%, F1.Acc of 87.50%, an SI of 12.20% and a MADI of 2.79%. The MTU-Net3 + model proposed in this study performed well in automated FHR analysis, demonstrating its potential as an effective tool in the field of fetal health assessment.© Korean Society of Medical and Biological Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *