| |

Artificial intelligence-based framework to identify the abnormalities in the COVID-19 disease and other common respiratory diseases from digital stethoscope data using deep CNN.

Researchers

Journal

Modalities

Models

Abstract

The utilization of lung sounds to diagnose lung diseases using respiratory sound features has significantly increased in the past few years. The Digital Stethoscope data has been examined extensively by medical researchers and technical scientists to diagnose the symptoms of respiratory diseases. Artificial intelligence-based approaches are applied in the real universe to distinguish respiratory disease signs from human pulmonary auscultation sounds. The Deep CNN model is implemented with combined multi-feature channels (Modified MFCC, Log Mel, and Soft Mel) to obtain the sound parameters from lung-based Digital Stethoscope data. The model analysis is observed with max-pooling and without max-pool operations using multi-feature channels on respiratory digital stethoscope data. In addition, COVID-19 sound data and enriched data, which are recently acquired data to enhance model performance using a combination of L2 regularization to overcome the risk of overfitting because of less respiratory sound data, are included in the work. The suggested DCNN with Max-Pooling on the improved dataset demonstrates cutting-edge performance employing a multi-feature channels spectrogram. The model has been developed with different convolutional filter sizes (1×12, 1×24, 1×36, 1×48, and 1×60) that helped to test the proposed neural network. According to the experimental findings, the suggested DCNN architecture with a max-pooling function performs better to identify respiratory disease symptoms than DCNN without max-pooling. In order to demonstrate the model’s effectiveness in categorization, it is trained and tested with the DCNN model that extract several modalities of respiratory sound data.© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *